

CASE STUDY:

TURNING UP THE HEAT BRINGS RATCHABURI'S FUEL COSTS DOWN US\$2.4M A YEAR.

CHALLENGE

When the gas turbine combined cycle (GTCC) plant owned by Ratchaburi Power Company Limited (RPCL), an independent power producer near Bangkok, Thailand, entered service, it was optimized for base-load operation. Within a few years, it began to be dispatched a significant amount of time at partial loads and, by 2015, was running 50% of the time below 80% load. This created a need to improve plant heat rate at part loads on the GTCC. RPCL collaborated with Mitsubishi Power to find the best solution to improve the efficiency at part loads.

By 2017, RPCL's dispatch profile had changed again. Although still below full load, it was being dispatched at higher loads than before and in governor control mode most of the time. This resulted in frequent load changes that reduced the benefits of the original solution. It was clear that a more flexible and comprehensive approach was needed, so Mitsubishi Power and RPCL worked together to define the most cost-effective approach.

SOLUTION

Together, Mitsubishi Power and RPCL found that the IGV Optimization solution would increase operation flexibility and

allow RPCL to run more efficiently at part load by tuning the IGV (inlet guide vane) function. The solution, which is part of the TOMONI Flexible Operation and Performance Improvement suites, was implemented into RPCL's existing control system during a periodic inspection in 2015. It increased Turbine Inlet Temperature (TIT) by tuning the IGV function for IGV close. Adding a function to open IGV temporarily in load change prevented a TIT overshoot in load change.

In 2017, the answer was a more sophisticated digital control strategy that optimized the IGV closure over a wider load range, both at stable loads and during frequent load changes. This new solution was installed during a planned outage in early 2018, and Mitsubishi Power engineers tuned and optimized the combustion dynamics, ensuring any technical challenges of the IGV closing were addressed before the planned outage was complete.

RESULT

The IGV Optimization solution in 2015 increased the plant's efficiency, which reduced fuel consumption, leading to a savings of 30 million Thai baht per year. The efficiency improved with partial load IGV modulation by about 0.4% during operation at 80% of full load.

The 2018 upgrade greatly expanded the load range where the gas turbine exhaust temperature is optimized and allowed for frequent load changes to meet market demands. The additional flexibility puts RPCL in a better position to increase their profits in today's market while responding to future changes in grid dispatch. Mitsubishi Power and RPCL calculate the improved part load efficiency enabled by this digital solution will lead to an average savings of 45 million Thai baht per year (US\$1.2 million) on each of the two power blocks.

"This TOMONI digital solution improved our bottom line by reducing our fuel costs and helping offset the inevitable changes that take place as a plant ages. Not only did it make our plant more efficient, but it also helps our facility fit the realities of our business in a dynamic energy marketplace without a significant capital investment for new hardware. Mitsubishi Power technical support and the overall cost savings we achieved made this a profitable venture for our power plant."

Charus Thaebanpakul

Chief Operating Officer, RPCL

TOMONI. is a suite of intelligent solutions that accelerates decarbonization with power plant design, 0&M and system knowledge, together with strong customer and partner collaborations. TOMONI leverages advanced controls, artificial intelligence and machine learning with multi-layered cybersecurity to make energy systems smarter, more profitable and ultimately more autonomous on the road to a sustainable future.

